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Abstract

In this paper, we present a finite element method for singularly perturbed convection–diffusion problems in both one

and two dimensions, based on a set of weighted basis functions constructed on unstructured meshes (in 2D). For the

one-dimensional case, both first and second-order schemes are discussed. A technique for approximating fluxes is

proposed. Some theoretical results on uniform convergence are obtained. For the two-dimensional case, a first-order

scheme is constructed for problems with two singular perturbation parameters. A technique is also developed in ap-

proximating fluxes in 2D. This technique is used to simplify the calculation of the integrals in the stiffness matrix arising

from the scheme, which will save computational costs. The numerical results support the theoretical results and

demonstrate that the method is stable for a wide range of singular perturbation parameters.
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1. Introduction

Many phenomena in engineering, physics and finance are governed by convection–diffusion equations

in which the magnitudes of the diffusion coefficients are much smaller than those of the convection

coefficients. Such problems are called convection-dominated or singularly perturbed, and boundary layers
normally appear in the solution. Due to the presence of boundary layers, standard finite element or finite

difference methods are, in general, not suitable for solving these problems, because these methods will

result in spurious oscillations or non-physical solutions. To overcome this difficulty, many special

finite element techniques have been developed. These include upwind finite element [2,3,5,6,9–11,14],
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Petrov–Galerkin finite element [4,13], streamline diffusion methods [15,16], monotone finite element [29]

and exponentially fitted finite element [12,18–20,26–28]. However, the former three methods do not al-

ways give accurate results, especially when the diffusion coefficients are of the same magnitude as that of
the mesh size used. The exponentially fitted methods in [26,27] do not have explicit expressions for the

basis functions and they are essentially first-order schemes. Thus, we are motivated to look for explicit

basis functions, which are convenient to construct and analyze, and easy to extend to high-order and/or

multi-dimensional cases.

In this paper, we present a novel finite element method for a singularly perturbed convection–diffusion

problem in one and two dimensions. This method is based on a set of basis functions obtained by

multiplying a standard basis function constructed on a triangular mesh (2D case) by a suitable weight.

This finite element method always results in non-oscillatory numerical solutions. The paper is organized
as follows.

The weighted basis functions in one dimension are described in the next section. Both first and second-

order schemes in one dimension are presented and analyzed in Section 3. In Section 4, we shall discuss the

method on an unstructured triangular mesh in two dimensions. Numerical results are presented in Section 5

to demonstrate the effectiveness and usefulness of this method.

In what follows we will use the conventional notation for function sets and spaces. In particular, we will

use L2ðSÞ and CkðSÞ to denote, respectively, the space of square integrable functions and the set of kth
continuously differentiable functions on the set S.
2. 1D weighted basis functions

In this section, we consider the 1D linear singularly perturbed problem

ð�ew0 þ bðxÞwÞ0 þ cðxÞw ¼ f ðxÞ; wð0Þ ¼ wð1Þ ¼ 0; ð2:1Þ

where 0 < e � 1, cðxÞP 0, and bðxÞ has a positive lower bound. In this case the problem has a boundary
layer at x ¼ 1, see [17,22].

To be more precise, we assume that bðxÞ; cðxÞ; f ðxÞ 2 C1ð½0; 1�Þ and

0 < a6 bðxÞ6 b for x 2 ½0; 1�; ð2:2Þ

for some positive constants a and b. The above conditions guarantee the existence of a unique solution

w 2 C2ð½0; 1�Þ.
Let

- ¼ fxi j0 ¼ x0 < x1 < � � � < xN�1 < xN ¼ 1g

be a non-uniform mesh on ½0; 1�. We put Ii :¼ ðxi�1; xiÞ and hi :¼ xi � xi�1 for i ¼ 1; 2; . . . ;N . The mesh
parameter, h, is defined by h ¼ max16 i6N hi.

On this partition, the conventional piecewise linear basis functions satisfy the following:

uiðxiÞ ¼ 1; uiðxlÞ ¼ 0ðl 6¼ iÞ; i ¼ 1; 2; . . . ;N � 1: ð2:3Þ

The second-order finite element space can be obtained by adding the following bubble functions:

wi ¼
ðx� xi�1Þðx� xiÞ=hi if x 2 Ii;
0 otherwise:

�
ð2:4Þ
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For i ¼ 1; 2; . . . ;N � 1, let miðxÞ be a positive function. We define a new set of basis functions as

eui ¼

miðxÞ
miðxÞuiþmi�1ðxÞui�1

ui; x 2 Ii;
miðxÞ

miðxÞuiþmiþ1ðxÞuiþ1
ui; x 2 Iiþ1;

0; otherwise;

8><>: ð2:5Þ

for i ¼ 1; . . . ;N � 1. The basis functions corresponding to the two end points are u0 ¼ ðx1 � xÞ=h1 and

uN ¼ ðx� xN�1Þ=hN .
The choice of the weighting function miðxÞ in (2.5) is rather arbitrary, but we choose it as the following

exponentially fitted spline:

miðxÞ ¼ B½�bðxÞðx� xiÞ=e�;

where BðzÞ is the Bernoulli function defined by

BðzÞ ¼
z

ez�1
if z 6¼ 0;

1; if z ¼ 0:

�
To obtain the stability of standard finite element approximation of convection dominated diffusion

equations, an exponentially decreasing weight only in the layer elements was also introduced by Axelsson

[1]. By adding more basis functions, we can obtain higher order basis functions. For example, the second

order basis functions can be obtained by adding the following basis functions to the set defined by (2.5).ewi ¼ ðx� xiÞeui for i ¼ 1; . . . ;N � 1; x 2 Ii [ Iiþ1;ew0 ¼
m0ðxÞu0

m0ðxÞu0 þ m1ðxÞu1

ðx� x0Þ; x 2 I1;
ð2:6Þ

Typical cases of basis functions eui and
ewi are illustrated in Figs. 1 and 2.
0

1

xi xi+1xi-1

Fig. 1. An example of the basis function fuiðxÞ.



0

xi xi+1xi-1

hi+1

Fig. 2. An example of the basis function ewiðxÞ.
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Remark 2.1. If bðxÞ ¼ 0 or the weights mi ði ¼ 1; 2; . . . ;N � 1Þ are identical, the weighted basis functions

reduce to piecewise polynomial basis functions in the standard finite element method. Furthermore, when e
tends to 0, the limits of eui and

ewi become discontinuous, and they are similar to the basis functions of the

local discontinuous Galerkin method used in [7,8] for conservation laws and nonlinear time-dependent

convection–diffusion systems.

Lemma 2.1. The basis functions eu i and
ewi satisfyeuiðxiÞ ¼ 1; euiðxjÞ ¼ 0ðj 6¼ iÞ; 06 eui 6 1;ewiðxjÞ ¼ 0; j ¼ 0; 1; . . . ;N :

ð2:7Þ

Furthermore, we have for i ¼ 2; . . . ;N � 1;eui�1ðxÞ þ euiðxÞ ¼ 1 8x 2 Ii; ð2:8Þ

and for i ¼ 1; . . . ;N ;ewi�1ðxÞ þ ewiðxÞ ¼ ðx� xiÞ þ hieui�1ðxÞ; x 2 Ii: ð2:9Þ
Proof. Properties (2.7) and (2.8) can be trivially proved by using (2.3) and (2.4). In what follows we only

show (2.9). From the definition of ewiðxÞ in (2.6), we haveewi�1ðxÞ þ ewiðxÞ ¼ ðx� xi�1Þeui�1 þ ðx� xiÞeui:

Substituting (2.5) into the above equality, we have that for x 2 Ii;

ewi�1ðxÞ þ ewiðxÞ ¼ ðx� xi�1Þ
mi�1ðxÞ

miðxÞui þ mi�1ðxÞui�1

ui�1 þ ðx� xiÞ
miðxÞ

miðxÞui þ mi�1ðxÞui�1

ui

¼ ðx� xiÞ þ hieui�1:

This completes the proof of the lemma. �
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Note that if mkðxÞ; k ¼ i� 1; i; iþ 1 are identical, we haveeuiðxÞ ¼ uiðxÞ;ewiðxÞ ¼ wiðxÞ � wiþ1ðxÞ:
ð2:10Þ

In general, if mkðxÞ; k ¼ i� 1; i; iþ 1 are not identical, the statement (2.10) does not hold. However, on

Ii [ Iiþ1, we still have

P1 � Spanfeu iþ1;
ewiþ1; eui;

ewi; eui�1;
ewi�1g;

where P1 denotes the set of all piecewise linear polynomials on Ii [ Iiþ1.

We now consider the approximation of fluxes. By direct computation, we get

eu0
iðxÞjIi ¼ � b

e
ebðx�xiÞ=e

e�bhi=e � 1
� b0

e
ðebðx�xiÞ=e � 1Þe�bhi=ehi þ ðe�bhi=e � 1Þebðx�xiÞ=eðx� xiÞ

ðe�bhi=e � 1Þ2
;

eu0
iðxÞjIiþ1

¼ � b
e

ebðx�xiÞ=e

ebhiþ1=e � 1
þ b0

e
ðebðx�xiÞ=e � 1Þebhiþ1=ehiþ1 � ðebhiþ1=e � 1Þebðx�xiÞ=eðx� xiÞ

ðebhiþ1=e � 1Þ2
:

ð2:11Þ

Let giðxÞ and hiðxÞ denote the flux associated with euiðxÞ and ewiðxÞ, respectively, i.e.,
giðxÞ ¼ �eeu0

iðxÞ þ bðxÞeuiðxÞ;
hiðxÞ ¼ �eew0

iðxÞ þ bðxÞewiðxÞ:
Substituting (2.5), (2.6) and (2.11) into the above, we obtain

giðxÞ ¼ �giðxÞ þ b0RiðxÞ; ð2:12Þ
hiðxÞ ¼ �hiðxÞ þ b0ðx� xiÞRiðxÞ; ð2:13Þ

where

�giðxÞ ¼
b e�bhi=e

e�bhi=e�1
; x 2 Ii;

b ebhiþ1=e

ebhiþ1=e�1
; x 2 Iiþ1;

0; otherwise;

8>><>>: ð2:14Þ
�hiðxÞ ¼ ðx� xiÞ�giðxÞ � eeuiðxÞ;

and

RiðxÞ ¼

ðebðx�xiÞ=e�1Þe�bhi=ehiþðe�bhi=e�1Þebðx�xiÞ=eðx�xiÞ
ðe�bhi=e�1Þ2 ; x 2 Ii;

� ðebðx�xiÞ=e�1Þebhiþ1=ehiþ1�ðebhiþ1=e�1Þebðx�xiÞ=eðx�xiÞ
ðebhiþ1=e�1Þ2

; x 2 Iiþ1;

0; otherwise:

8>>><>>>:
Using the definition of ~ui in (2.5) we can show that �giðxÞ in (2.14) can be rewritten as

�giðxÞ ¼
�e

x� xk
B

b
e
ðx

�
� xkÞ

�
~ui; ð2:15Þ

where k ¼ i� 1 if x 2 Ii and k ¼ iþ 1 when x 2 Iiþ1:
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From (2.12), we see that the flux giðxÞ can be decomposed into a leading term �giðxÞ and a remainder term

b0RiðxÞ. Here Riðxi�1Þ ¼ RðxiÞ ¼ Rðxiþ1Þ ¼ 0. Using (2.14), we get that for x 2 Iiþ1

jb0RiðxÞj6
b0

b
�giðxÞ

���� ����h:
Following the above analysis, one obtains that for x 2 Iiþ1,

�giðxÞ þ �giþ1ðxÞ ¼ bðxÞ;

giðxÞ þ giþ1ðxÞ ¼ bðxÞ;

RiðxÞ þ Riþ1ðxÞ ¼ 0:
3. Finite element method in one dimension

Let Vh ¼ Spanf~wig. We define the following Galerkin finite element problem: find a wh 2 Vh such that

8vh 2 Vh, we have

�ð�ew0
h þ bðxÞwh; v0hÞ þ ðcðxÞwh; vhÞ ¼ ðf ; vhÞ; ð3:1Þ

where ð�; �Þ denotes the inner product.
3.1. First-order scheme

We first consider the first-order scheme. Setting wh ¼
PN�1

j¼1 wj~uj and vh ¼ ~ui for any i ¼ 1; . . . ;N � 1 in

(3.1), we obtain

qiþ1wiþ1 þ qiwi þ qi�1wi�1 ¼ ðf ; ~uiÞ ð3:2Þ

with the boundary conditions w0 ¼ 0 ¼ wN , where

qk ¼
Z xiþ1

xi�1

½�gkðxÞ~u0
iðxÞ þ cðxÞ~uk ~ui�dx; k ¼ iþ 1; i; i� 1: ð3:3Þ

As jRkðxÞj ¼ OðhÞ, gkðxÞ can be approximated by �gkðxÞ. So we have

qi ’ �
Z xi

xi�1

b
e�bhi=e

e�bhi=e � 1
u0

i dx
�

þ
Z xiþ1

xi

b
ebhiþ1=e

ebhiþ1=e � 1
u0

i dx
�
þ
Z xiþ1

xi�1

cðxÞ~ui~ui dx:

Noticing the fact bðxÞ > a from (2.2) and using (2.7), we immediately obtain

qi ’ � �giðx�i Þ
Z xi

xi�1

u0
i dx

�
þ �giðx�iþ1Þ

Z xiþ1

xi

u0
i dx
�
þ
Z xiþ1

xi�1

cðxÞ~ui~ui dx

¼ ��giðx�i Þ þ �giðx�iþ1Þ þ
Z xiþ1

xi�1

cðxÞ~ui~ui dx:
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Here �gðx�i Þ ¼ limx!0� �gðxÞ. Analogously to the above deduction, we have

qiþ1 ¼ �giþ1ðx�iþ1Þ þ
Z xiþ1

xi

cðxÞ~uiþ1~ui dx;

qi�1 ¼ ��gi�1ðx�i Þ þ
Z xi

xi�1

cðxÞ~ui�1~ui dx:

For the case when e � h, we use �giðxÞ to approximate giðxÞ so that the computational cost is reduced. If the

mesh size h has the same magnitude as e, it is not necessary to replace the flux giðxÞ by �giðxÞ because giðxÞ is
very smooth and integrals in (3.3) are easy to evaluate.

Scheme (3.2) is similar to that obtained by Stynes and O�Riordan [23,24] by applying the finite element

method with exponentially fitted splines to (2.1). In [23,24], frozen coefficients for bðxÞ and cðxÞ are adopted.
Using the analogous strategy as in [24,25], we can prove the following theorem. Here we omit the repeating

proof.

Theorem 3.1. Let w and wh be solutions to (2.1) and (3.2), respectively. Then, we have

kw� whke 6 c1h1=2;

where c1 is a positive constant independent of h, w and e; and kvke ¼ eðv0; v0Þ þ ðv; vÞ.

3.2. Second-order scheme

Let wh ¼
PN�1

j¼1 wj~uj þ
PN�1

j¼0 vj~wj and vh ¼ ~uiði ¼ 1; . . . ;N � 1Þ; ~wiði ¼ 0; . . . ;N � 1Þ in (3.1), we obtain

qiþ1wiþ1 þ qiwi þ qi�1wi�1 þ piþ1viþ1 þ pivi þ pi�1vi�1 ¼ ðf ; ~uiÞ; ð3:4Þ
riþ1wiþ1 þ riwi þ ri�1wi�1 þ siþ1viþ1 þ sivi þ si�1vi�1 ¼ ðf ; ~wiÞ; ð3:5Þ

for i ¼ 1; 2; . . . ;N � 1, and

r1w1 þ s1v1 þ s0v0 ¼ ðf ; ~w0Þ: ð3:6Þ

In (3.4)–(3.6), the coefficients qkðk ¼ i� 1; i; iþ 1Þ are determined by (3.3) and the others are defined by

pk ¼
Z xiþ1

xi�1

½ðe~w0
k � bðxÞ~wkÞ~u0

iðxÞ þ cðxÞ~wk ~ui�dx;

rk ¼
Z xiþ1

xi�1

½ðe~u0
k � bðxÞ~ukÞ~w0

iðxÞ þ cðxÞ~uk
~wi�dx;

sk ¼
Z xiþ1

xi�1

½ðe~w0
k � bðxÞ~wkÞ~w0

iðxÞ þ cðxÞ~wk
~wi�dx;

for k ¼ iþ 1; i; i� 1.

Remark 3.1. We comment that, as shown by Roos [21], even on a Shishkin mesh, stability of a numerical

solution obtained by conventional finite element is very sensitive to the choice of the boundary layer
thickness s0e lnN , where s0 is a positive parameter characterizing the width of the layer. However, if we

discretize (2.1) by the finite element method with weighted basis functions in a subregion containing the

boundary layer and by the standard finite element method in the rest of computational domain, the re-

sulting numerical solutions are satisfactory and insensitive to s0. This will be demonstrated later in Fig. 4.
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Remark 3.2. We also comment that it is possible to extend this second-order scheme to two dimensions.

However, the discussion of this extension is lengthy, and thus we will omit it. In practice, the integrals defining

pk; rk and sk given in the above have to be approximated by a quadrature rule. Attention needs to be paid to

this approximation when e � 1 in order not to affect the second-order accuracy of the scheme. This is because
all the basis functions contain layers when e is small. Nevertheless, it is possible to find approximations to

these integrals. For example, since ~ui behaves like a step function when e � 1 (cf. Fig. 1), ~u0
i behaves like a d-

function.Wemay use this information to approximate the first term in pk. We will leave this discussion, along

with the extension of the second-order scheme to higher dimensions, to a forthcoming paper.
4. Finite element method in two dimensions

Let us consider the following problem in two-dimensional space:

r � ð�Aerwþ bwÞ þ kw ¼ f ðX Þ; X 2 X � R2;

wjoX ¼ 0;
ð4:1Þ

where X is a bounded open set, oX denotes the boundary of X, Ae ¼ diagfe1; e2g, X ¼ ðx; yÞt and

b ¼ ðb1ðX Þ; b2ðX ÞÞt. Eq. (4.1) is well-posed if

1

2
r � bðx; yÞ þ kðx; yÞ > 0 ð4:2Þ

for X 2 X. For the convection coefficients in (4.1), we assume that b1; b2 2 C1ð�XÞ and satisfy b1ðX ÞP b and

b2ðX ÞP b in X for some positive constant b. We also assume that k; f 2 L2ðXÞ. Finally, for simplicity, we

assume that oX is polygonal to avoid discussion on approximation of curved boundaries.

Let X be partitioned into a triangular mesh. For an arbitrary triangle T in the mesh with vertices

Xi;Xj;Xk, the standard linear basis functions ui, uj and uk satisfy

ulðXmÞ ¼ dlm ð4:3Þ

for l;m ¼ i; j; k, where dlm denotes the Kronecker delta. Similarly to the 1D case, we define the weight mlðX Þ
corresponding to ulðX Þ as

mlðX Þ ¼ Bð�ðA�1
e bÞtðX � XlÞÞ:

Using these weights, we obtain the following weighted basis functions on T :

eul ¼
mlðX Þul

miðX Þui þ mjðX Þuj þ mkðX Þuk
; l ¼ i; j; k; ð4:4Þ

where each eul has the same support as ul. Using (4.3) and the definition of eul, it is easy to show that eul

ðl ¼ i; j; kÞsatisfy the following properties.

Lemma 4.1. The weighted basis function is continuous and satisfies thateulðXmÞ ¼ dlm; 06 eul 6 1;

for l;m ¼ i; j; k andeui þ euj þ euk ¼ 1

on �T .
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Remark 4.1. If mlðX Þðl ¼ i; j; kÞ are identical, then eui reduces to ui, and

Spanfeui; euj; eukg ¼ Spanfui;uj;ukg: ð4:5Þ

Otherwise, statement (4.5) does not hold. However, we still have

P0 � Spanfeu i; euj; eukg:

For every eulðl ¼ i; j; kÞ we define a flux gl by

gl ¼ �Aereul þ beul: ð4:6Þ

As in the 1D case, using (2.15) we can derive, approximations gi to gi as given below:

gi ¼ �Ae
x� xj y � yj
x� xk y � yk

� ��1
BððA�1

e bÞtðX � XjÞÞ
BððA�1

e bÞtðX � XkÞÞ

� �
~uiðX Þ:

Let ST be the measure of T for the case when Xi;Xj and Xk are arranged in the anti-clockwise direction and

minus measure of ST for the other case. Then we have

ðx� xiÞðy � ykÞ � ðx� xkÞðy � yjÞ ¼ 2STuiðX Þ:

By means of the above equality, gi can be rewritten as

gi ¼ �ðAe=2ST Þ
y � yk �ðy � yjÞ

�ðx� xkÞ x� xj

� �
BððA�1

e bÞtðX � XjÞÞ
BððA�1

e bÞtðX � XkÞÞ

� �
½~uiðX Þ=uiðX Þ�: ð4:7Þ

Similarly, we have

gj ¼ �ðAe=2ST Þ
y � yi �ðy � ykÞ

�ðx� xiÞ x� xk

� �
BððA�1

e bÞtðX � XkÞÞ
BððA�1

e bÞtðX � XiÞÞ

� �
½~ujðX Þ=ujðX Þ�; ð4:8Þ
gk ¼ �ðAe=2ST Þ
y � yj �ðy � yiÞ

�ðx� xjÞ x� xi

� �
BððA�1

e bÞtðX � XiÞÞ
BððA�1

e bÞtðX � XjÞÞ

� �
½~ukðX Þ=ukðX Þ�: ð4:9Þ

Noting that

Bð�zÞ � zþ BðzÞ; ð4:10Þ

we then have the following lemma.

Lemma 4.2. For any X 2 �T , the fluxes gl and their approximations gl ðl ¼ i; j; kÞ satisfy

gi þ gj þ gk ¼ b; ð4:11Þ
gi þ gj þ gk ¼ b: ð4:12Þ
Proof. Since eui þ euj þ euk ¼ 1, we have

gi þ gj þ gk ¼ �Aerðeui þ euj þ eukÞ þ bðeui þ euj þ eukÞ ¼ b:
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Summing (4.7), (4.8) and (4.9) and using (4.4) we obtain

gi þ gj þ gk ¼
�Ae

2ST ½miðX Þui þ mjðX Þuj þ mkðX Þuk�

� y � yk �ðy � yjÞ
�ðx� xkÞ x� xi

� �
BððA�1

e bÞtðX � XjÞÞ
BððA�1

e bÞtðX � XkÞÞ

� �
miðX Þ

�
þ y � yi �ðy � ykÞ

�ðx� xiÞ x� xk

� �
BððA�1

e bÞtðX � XkÞÞ
BððA�1

e bÞtðX � XiÞÞ

� �
mjðX Þ

þ y � yj �ðy � yiÞ
�ðx� xjÞ x� xi

� �
BððA�1

e bÞtðX � XiÞÞ
BððA�1

e bÞtðX � XjÞÞ

� �
mkðX Þ

�
:

Using (4.10), we have

BððA�1
e bÞtðX � XlÞÞ ¼ �ðA�1

e bÞtðX � XlÞ þ mlðX Þ; l ¼ i; j; k:

Therefore,

gi þ gj þ gk ¼
Ae

2ST ½miðX Þui þ mjðX Þuj þ mkðX Þuk�

�
y � yk �ðy � yjÞ

�ðx� xkÞ x� xi

� � ðA�1
e bÞtðX � XjÞ þ mjðX Þ

ðA�1
e bÞtðX � XkÞ þ mkðX Þ

 !
miðX Þ

"

þ
y � yi �ðy � ykÞ

�ðx� xiÞ x� xk

� � ðA�1
e bÞtðX � XkÞ þ mkðX Þ

ðA�1
e bÞtðX � XiÞ þ miðX Þ

 !
mjðX Þ

þ
y � yj �ðy � yiÞ

�ðx� xjÞ x� xi

� � ðA�1
e bÞtðX � XiÞ þ miðX Þ

ðA�1
e bÞtðX � XjÞ þ mjðX Þ

 !
mkðX Þ

#

¼ Ae

miðX Þui þ mjðX Þuj þ mkðX Þuk
½A�1

e bmiðX Þui þ A�1
e bmjðX Þuj

þ A�1
e bmkðX Þuk� ¼ b:

This completes the proof of this lemma. �

Let epq ðp; q ¼ i; j; k; q 6¼ pÞ denote the unit vector along XpXq
��!

and s be the length of XpX where X 2 XpXq.

Putting

bpqðsÞ ¼ ðA�1
e bðsÞÞtepq;

dpqðsÞ ¼ ðA�1
e giðsÞÞ

t
epq;

ð4:13Þ

then, we have the following estimates.

Theorem 4.3. Let X 2 oT ; the boundary of T . Then it holds that

�eu0
iðsÞ þ bpqðsÞeuðsÞ ¼ dpqðsÞ½1þ ðb0pqðsÞ=bpqðsÞÞOðhÞ�; ð4:14Þ

where h is the mesh parameter. Furthermore, at the vertices of T we have

½�Aer~ui þ b~ui�jX¼Xm
¼ gijX¼Xm

; m ¼ i; j; k: ð4:15Þ
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Before proving this theorem, we comment that this theroem provides the estimates on the difference

between the fluxes and their approximations. In particular, (4.15) implies that the fluxes are equal to their

approximations at the vertices of an element. This is similar to that in [27] for a different type of basis
functions. This equality will later be used in the evaluation of integrals in the stiffness matrix to reduce the

computational cost. Let us now prove this theorem.
Proof. If X 2 XjXk, then ~uiðX Þ ¼ 0: Therefore, u0
iðsÞ ¼ 0, where s ¼ jXjX j. On the other hand, (4.7) can be

rewritten as

x� xj y � yj
x� xk y � yk

� �
A�1
e gi ¼ � BððA�1

e bÞtðX � XjÞÞ
BððA�1

e bÞtðX � XkÞÞ

� �
~uiðX Þ ¼ 0: ð4:16Þ

This implies that djkðsÞ ¼ 0: Therefore, (4.14) holds for this case.
For the case X 2 XiXj, we set s ¼ jXiX j. From the definition of weighted basis function (4.4), we have

~uiðsÞ ¼
Bð�bijsÞðhij � sÞ

Bð�bijsÞðhij � sÞ þ Bðbijðhij � sÞÞs ¼
ebijhij � ebijs

ebijhij � 1
; ð4:17Þ

for X 2 XiXj, where hij denotes the length of the edge XiXj. From the first equation of (4.16), dijðX Þ
(X 2 XiXj) can also be expressed in terms of s by using X � Xj ¼ �ðhij � sÞeij, i.e.,

dijðsÞ ¼
1

hij � s
BðbijðsÞðhij � sÞÞeu iðsÞ ¼

ebijhij

ebijhij � 1
bij: ð4:18Þ

Then, by direct computation we have

~u0
iðsÞ � bij~uiðsÞ þ dij ¼ RðsÞb0ij; ð4:19Þ

where

RðsÞ ¼ ðebijs � 1Þebijhij hij
ðebijhij � 1Þ2

� ebijss
ebijhij � 1

:

It is easy to see that

Rð0Þ ¼ RðhijÞ ¼ 0 ð4:20Þ

and

jRðsÞj6 c0
dij
bij

���� ����hij: ð4:21Þ

Here (4.18) is used to obtain the above inequality and c0 is independent of e and hij. Combining (4.21) with

(4.19), we get

�~u0
iðsÞ þ bij~uiðsÞ ¼ dij 1

"
þO

b0ij
bij

hij

 !#
if X 2 XiXj:

The fact that Rð0Þ ¼ 0 in (4.20) implies that

�eu0
ið0Þ þ bijð0Þeu ið0Þ ¼ dijð0Þ:
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By (4.13) we have�
� deui

deij
þ ðA�1

e bÞteij~ui

�
X¼Xi

¼ ðA�1
e giÞ

t
eij

� 	
X¼Xi

: ð4:22Þ

Analogously, for X 2 XiXk and s ¼ jXiX j we also obtain

�eu0
iðsÞ þ bik eu iðsÞ ¼ dik 1

�
þO

b0ik
bik

hik

� ��
and �

� deui

deik
þ ðA�1

e bÞteik ~ui

�
X¼Xi

¼ ðA�1
e giÞ

t
eik

� 	
X¼Xi

: ð4:23Þ

Since eij and eik are linearly independent, combining (4.22) with (4.23) we obtainh
� Aer~ui þ b~ui

i���
X¼Xm

¼ gijX¼Xm
; m ¼ i:

Similarly, the rest of this theorem can be proved. �

Remark 4.2. The ideas of constructing the weighted basis functions, fluxes and their approximations de-

fined in (4.4), (4.6) and (4.7)–(4.9) can be extended to higher dimensions easily. In higher dimensional cases,

Lemma 4.2 and Theorem 4.3 also hold. However, more complicated notation and symbols are needed. In

this work, only a simple boundary condition, i.e., the homogeneous Dirichlet condition are considered, but

this method can to applied to solve singularly perturbed convection–diffusion problems with more complex
boundary conditions by using the analogous treatment in the conventional finite element method.

Let N denote the total number of mesh nodes in X and Vh ¼ spanf~u1; ~u2; . . . ; ~uNg � H 1
0 ðXÞ, where

H 1
0 ðXÞ :¼ fv : v; ov

ox ;
ov
oy 2 LðXÞ; vjoX ¼ 0g. The finite element method with weighted basis functions for (4.1) is

to find a wh ¼
PN

l¼1wleul 2 Vh such that for any vh 2 Vh,

Gðwh; vhÞ ¼ F ðvhÞ; ð4:24Þ
where

Gðwh; vhÞ ¼
Z
X
f½e1ðwhÞx � b1ðX Þwh�ðvhÞx þ ½e2ðwhÞy � b2ðX Þwh�ðvhÞy þ kwhvhgdxdy;

F ðvhÞ ¼
Z
X
fvhdxdy:

Using (4.2) we can easily show that the bilinear form Gð�; �Þ satisfies

Gðvh; vhÞP minðe1; e2Þðrvh;rvhÞ þ
1

2
r � b

��
þ k

�
vh; vh

�
8vh 2 Vh:

The above inequality implies that Gð�; �Þ is coercive on Vh � Vh. Therefore, by the well-known Lax–Milgram

theorem, there exists a unique solution to (4.24).

Setting that wh ¼
PN

l¼1 wleul and test function vh ¼ eum ðm ¼ 1; 2; . . . ;NÞ in (4.24), we obtain the fol-

lowing linear system:

ðqlmÞN�N ðw1;w2; . . . ;wN Þt ¼ c;

where c is a known vector, and
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qlm ¼
Z
Vm

ð�glÞ � reum dxdy þ
Z
Vm

kðX Þeuleum dxdy: ð4:25Þ

In (4.25), Vm denotes the support of eum that equals the union of the triangles sharing the mesh node Xm.

When e is small, reum varies sharply along one side of an element, which makes the numerical evaluation of

(4.25) difficult. To overcome this difficulty, we observe that ðe1ð~ulÞx � b1~ul; e2ð~ulÞy � b2~ulÞ
t
can be ap-

proximated by �gl from Theorem 4.3, and gl;1 and gl;2 vary smoothly in any element T by contrast with
reum. Therefore, we may approximate qml by

qlm ’
X
T2Vm

ð�glðXT ÞÞt �
Z
T
reum dxdy þ

Z
Vm

kðX Þeuleum dxdy;

where glðXT Þ is the average of glðX Þ at three vertices of the element T . Now, integrating by parts we get

qlm ’
X
T2Vm

ð�glðXT ÞÞt �
Z
oT
n~um dsþ

Z
Vm

kðX Þeuleum dxdy; ð4:26Þ

where n is the unit outward normal vector of oT . The line integral in (4.26) can be numerically evaluated by

(4.17) easily.
5. Numerical results

Example 1. we consider the following 1D problem:

�ew0 þ ð1þ xÞw0 þ 2w ¼ 1; 0 < x < 1; ð5:1Þ

with the boundary conditions

wð0Þ ¼ wð1Þ ¼ 0:
0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

w

x

 e=0.1

 e=10
-8

Fig. 3. Numerical solutions for e ¼ 0:1 and 10�8.
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0.4

e=10
-4

w

x

Fig. 4. The numerical solutions on a Shishkin mesh.
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To solve this problem we choose a uniform mesh with N ¼ 30 and apply the method with weighted basis

functions on this mesh to two cases: e ¼ 10�1 and e ¼ 10�8. Numerical results displayed in Fig. 3 dem-

onstrate that this method is stable for the chosen values of e.
To test the second-order method, we solve (5.1) on a Shishkin mesh (cf. for example, [17]) by two

methods. One is the conventional piecewise linear finite element method, and the other is the mixed method

obtained by applying the finite element method with basis functions in a subregion containing the boundary

layers and the piecewise linear finite element method in the rest of the domain. In our computation, N ¼ 20,

s0 ¼ 2 and e ¼ 10�4. The results are plotted in Fig. 4 in which the solid line denotes the exact solution to

(5.1), and + and dot denote the numerical solutions obtained by the mixed method and the linear finite
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Fig. 5. The triangulation of ð0; 1Þ2.
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0.4
0.6
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0.8

yx

w

Fig. 6. The computed solution of Example 2.
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element method, respectively. From Fig. 4 we see that the solution from the linear finite element method

contains spurious oscillations even on the Shishkin mesh, while the solution from the mixed method
matches the exact one very well.

Example 2. Let us consider the 2D singular perturbation problem defined by

r �
�e1wx þ ð3� xÞw

�e2wy þ ð4� 2y þ y2Þw

� �
þ ð4� 2yÞw ¼ f ðx; yÞ; ðx; yÞ 2 X;

wjoX ¼ 0;

ð5:2Þ

where X ¼ ð0; 1Þ2 and

f ðx; yÞ ¼ 3

2
pcos

px
2
þ y3 sin

px
2
� px

2
cos

px
2
þ 12y2 � 6y3 þ 3y4:

In our computation, we choose e1 ¼ 10�3 and e2 ¼ 10�6. The triangulation of the computational region is

displayed in Fig. 5 with 930 elements and 506 nodes.We solve (5.2) by the weighted finite element method and

the numerical solution is depicted in Fig. 6. Clearly, the figure shows that thismethod is stable and convergent.
6. Concluding remarks

In this paper we present a finite element method for a singularly perturbed convection–diffusion

problem. The method is based on a set of weighted basis functions. The method is described in both one

and two dimensions. For the one dimensional case, both first-order and second-order methods are given. In

fact, the 1D method is similar to the an existing Petrov–Galerkin method based on �L�-splines (cf. for ex-

ample, Section 2.2 of [22]), though it is a Bubnov–Gerlerkin method.

The 1D first-order scheme is extended to two dimensions, based on an unstructured triangular mesh.
Theoretical investigations on the properties of the basis functions are performed. We comment that the

method in two dimensions is a Bubnov–Galerkin method since the test and trial function spaces are

identical in the method.

Numerical examples are also solved to show the usefulness of the method. The numerical results

demonstrate that this method is stable and convergent when sharp boundary layers are present.
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